EPR of O₂ Radicals in the Zeolites NH₄NaY and NH₄CaA

F. Köksal and F. Ucun^a

Physics Department, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
^a Department of Physics, Faculty of Arts and Sciences, Süleyman Demirel University, Isparta, Turkey

Z. Naturforsch. **53 a,** 951–954 (1998); received October 28, 1998

Activated and non-activated states of the zeolites NH₄NaY and NH₄CaA, and their NH₄⁺ forms were prepared with an $(NH_4)_2SO_4$ solution and were investigated by EPR after γ -irradiation. The formed radicals were attributed to O_2^- supposed to be trapped near a trigonally coordinated framework of ^{27}Al (I = 5/2). Anisotropic O_2^- spectra were observed, consisting of hyperfine structure due to the ^{27}Al framework, even at room temperature. This was attributed to the scarceness of NH₄⁺ sites or trap sites because of the preparation of the NH₄⁺ forms of the zeolites with an $(NH_4)_2SO_4$ solution. The crystal field splittings were found and interpreted.

Key words: EPR; Zeolites; O₂⁻; NH₄NaY; NH₄CaA.

Reprint requests to Prof. Dr. F. Köksal; Fax: +90 3624 576081.